Триггер представляет собой устройство с двумя устойчивыми состояниями. Устойчивым называется состояние, в котором устройство в отсутствии внешних воздействий может прибывать сколько угодно долго. В общем случае триггер имеет два выхода: прямой и инверсный. Состояние триггера принято определять по значению потенциала на прямом выходе. Если на прямом выходе имеется потенциал равный логической единице, то триггер находится в единичном состоянии (при этом потенциал инверсного выхода равен логическому нулю). В противном случае триггер находится в нулевом состоянии. В основу классификации потенциальных триггеров, в которых имеется связь по постоянному току между входами и выходами, положены два основных признака: функциональный и способ записи информации в триггер.
Функциональная классификация является наиболее общей и представляет собой классификацию триггеров по виду логического уравнения, характеризующего состояния входов и выходов триггера в момент времени до его срабатывания tn и после tn+1. В соответствии с функциональной классификацией различают RS-, D-, T- и JK-триггеры.
Классификация по способу записи информации характеризует временную диаграмму работы триггера, т.е. определяет ход процесса записи информации в триггер. По этой классификации триггеры подразделяются на асинхронные и тактируемые. Отличительной особенностью асинхронных триггеров является то, что запись информации в них осуществляется статическим способом, т.е. непосредственно с поступлением информационного сигнала на его вход. Запись информации в тактируемый триггер, имеющий информационные и тактовые входы, осуществляется только при подаче разрешающего или тактирующего импульса. Среди тактируемых триггеров различают триггеры, срабатывающие по уровню (в момент прихода тактирующего сигнала или, что одно и то же, по его переднему фронту), и триггеры с внутренней задержкой, срабатывающие после окончания тактирующего сигнала (по заднему фронту). Такое управление тактируемыми триггерами называется динамическим. Кроме того, тактируемые триггеры подразделяются на однотактные и многотактные в зависимости от числа тактирующих сигналов, необходимых для перевода триггера из одного состояния в другое.
При проектировании устройств с применением триггеров, кроме значения функции, выполняемой триггером, необходимо знать его основные схемотехнические параметры. К таким параметрам относятся как стандартные параметры любой логической микросхемы – это нагрузочная способность, коэффициент объединения по входу, время задержки и т.д., так и индивидуальные:
Закон функционирования триггера удобно отображать с помощью так называемых таблиц переходов, в которых даются состояния входов и выходов триггера в момент времени до его срабатывания tn и после tn+1, при этом выходное состояние может обозначаться следующим образом:
0 — триггер находится в состоянии Q=0;
1 — триггер находится в состоянии Q=1;
Q — состояние триггера не изменяется при изменении информации на входе;
— состояние триггера изменяется на противоположное при изменении информации на входе;
Х — неопределенное состояние триггера — характеризуется тем, что в процессе действия информационного сигнала на входе логические уровни выходов триггера одинаковы ( или ), а после окончания действия информационного сигнала триггер может оказаться в состояние Q=1 или Q=0 с равной вероятностью.
Перейдем к рассмотрению триггеров различных типов.
RS-триггер. Триггером RS-типа называется логическое устройство с двумя устойчивыми состояниями, имеющее два информационных входа R и S, такие, что при S=1 и R=0 триггер принимает единичное состояние (Q=1), а при S=0, R=1 — нулевое (Q=0). Вход S называется единичным, а R — нулевым. Принцип работы RS-триггера можно задать таблицей переходов, где Qn – исходное состояние триггера:
tn |
tn+1 |
|
Rn |
Sn |
Qn+1 |
0 |
0 |
Qn |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
X |
Для того, чтобы найти логическое уравнение RS-триггера, преобразуем таблицу переходов к виду, в котором состояние Qn определим конкретными значениями и представим его в виде входной переменной:
tn |
tn+1 |
||
Rn |
Sn |
Qn |
Qn+1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
X |
1 |
1 |
1 |
X |
Запишем СДНФ для функции Qn+1 (неопределенные состояние не учитываются)
.
Для минимизации СДНФ заполним диаграмму Вейча, в которой отметим также неопределенные значения функции Qn+1 (рис. 5.2,а). Из диаграммы видно, что в результате склейки можно получить две простые импликанты и. Так как функция является частично определенной, то для избавления от переменной в импликанте , можно неопределенные значения в диаграмме заменить единичными значениями и произвести склейку всего одной переменной Sn (рис. 5.2,б). МДНФ, таким образом примет вид, который и будет соответствовать логическому уравнение RS-триггера
.
а) б)
Рис. 5.2. Диаграммы Вейча для асинхронного RS-триггера.
Полученное уравнение задает работу асинхронного RS-триггера. Состояние такого триггера определяется только значениями сигналов R и S. Асинхронный RS-триггер можно построить на логических элементах И-НЕ, ИЛИ-НЕ. Преобразуем логическое уравнение асинхронного RS-триггера, используя законы отрицания алгебры логики:
.
Для реализации триггера на элементах ИЛИ-НЕ проведем отрицание обеих частей полученного уравнения
.
Таким образом, сигнал на инвертирующем выходе RS-триггера — это сигнал на выходе элемента ИЛИ-НЕ, на один вход которого подан сигнал S, а на второй — сигнал с выхода другого элемента ИЛИ-НЕ (рис. 5.3,а).
а) б) в)
Рис. 5.3. Структурные схемы асинхронных RS-триггеров на базе элементов ИЛИ-НЕ, И-НЕ и УГО асинхронного RS-триггера с инверсными входами.
Для реализации RS-триггера на элементах И-НЕ, необходимо выполнить следующие преобразования:
,
.
Структурная схема асинхронного RS-триггера, соответствующая полученному уравнению, изображена на рис. 5.3,б, а условное графическое изображение – на рис. 5.3,в. Из рисунка видно, что на вход триггера на элементах И-НЕ сигналы R и S необходимо подавать в инверсном виде.
В качестве самостоятельных устройств асинхронные RS-триггеры находят ограниченное применение, но являются базовыми схемами для более сложных триггерных устройств. В устройствах цифровой обработки находят применение тактируемые RS-триггеры, которые называются еще синхронными. Эти триггеры, кроме входов установки R и S, имеют вход разрешения записи C. Срабатывание синхронного триггера происходит только при наличии активного сигнала на этом входе. Работа синхронного RS-триггера задается таблицей переходов:
tn |
tn+1 |
||
Cn |
Rn |
Sn |
Qn+1 |
0 |
0 |
0 |
Qn |
0 |
0 |
1 |
Qn |
0 |
1 |
0 |
Qn |
0 |
1 |
1 |
Qn |
1 |
0 |
0 |
Qn |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
X |
Из таблицы видно, что до тех пор, пока сигнал Cn имеет значение логического нуля, триггер сохраняет свое состояние неизменным. Как только Cn становится равным логической единицы, работа синхронного триггера разрешается, и его состояния соответствуют состояниям асинхронного триггера. Алгоритм нахождения логической функции синхронного RS-триггера аналогичен алгоритму нахождения логической функции асинхронного RS-триггера. Преобразуем таблицу переходов к виду:
tn |
tn+1 |
|||
Cn |
Rn |
Sn |
Qn |
Qn+1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
X |
1 |
1 |
1 |
1 |
X |
Заполним диаграмму Вейча с учетом неопределенных состояний (рис. 5.4,а). С целью упрощения МДНФ зададим вместо неопределенных значений единичные и найдем простые импликанты путем склеивания, как это показано на рис. 5.4,б. На рисунке специально не была произведена склейка импликанты с целью соблюдения аналогии ФАЛ асинхронного и синхронного RS-триггеров.
а) б)
Рис. 5.4. Диаграммы Вейча для синхронного RS-триггера.
Согласно диаграмме запишем минимальную ФАЛ и выполним следующее преобразование
.
Полученная ФАЛ содержит два слагаемых. Первое слагаемое представляет собой логическою конъюнкцию инверсного значения сигнала тактирования и сигнала состояния триггера до срабатывания, а второе – логическую конъюнкцию прямого значения сигнала тактирования и ФАЛ асинхронного RS-триггера.
Для реализации структурной схемы синхронного RS-триггера необходимо сигналы установки S и R асинхронного триггера стробировать сигналом разрешения C. Сделать это можно, используя логические элементы И, либо И-НЕ. В первом случае стробированные сигналы R и S будут представлены в прямом виде, поэтому их необходимо подавать на схему асинхронного RS-триггера на элементах ИЛИ-НЕ (рис. 5.5,а). Во втором случае сигналы R и S окажутся проинвертированными. Поэтому в качестве асинхронного следует выбрать триггер на базе элементов И-НЕ (рис. 5.5,б).
а) б)
Рис. 5.5. Варианты структурных схем синхронных RS-триггеров.
Часто синхронные триггеры любых типов имеют дополнительные входы асинхронной установки в нуль или единицу. Структурная схема такого синхронного RS-триггера приведена на рис. 5.6,а, а его условное графическое обозначение – на рис. 5.6,б.
а) б)
Рис. 5.6. Структурная схема синхронно RS-триггера с входами асинхронной установки и его условное графическое обозначение.
Поскольку триггер, изображенный на структурной схеме, реализован на элементах И-НЕ, то сигналы асинхронной установки R и S должны иметь инверсные активные уровни. Кроме того, поскольку сигналы асинхронной установки подаются непосредственно на выходной каскад (асинхронный RS-триггер), то они имеют больший приоритет перед остальными сигналами триггера.
D-триггер. D-триггер относится к одновходовым триггерам. Асинхронный D-триггер имеет один вход D и прямой и инверсный выходы Q и . Работа асинхронного D-триггера задается таблицей переходов:
tn |
tn+1 |
Dn |
Qn+1 |
0 |
0 |
1 |
1 |
Соответствующее таблице истинности логическое уравнение имеет вид
.
Логическое уравнение показывает, что состояние D-триггера в момент времени tn+1 соответствует значению сигнала на D-входе в момент времени tn, т.е. с помощью D-триггера осуществляется задержка входного сигнала. Отсюда второе название асинхронного D-триггера – триггер задержки. Асинхронный D-триггер не имеет практического применения, поскольку его функцию может выполнять схема из последовательного соединения двух инверторов. Наибольший интерес представляет тактируемый (синхронный) D-триггер, работа которого описывается таблицей переходов:
tn |
tn+1 |
|
Cn |
Dn |
Qn+1 |
0 |
0 |
Qn |
0 |
1 |
Qn |
1 |
0 |
0 |
1 |
1 |
1 |
Аналогично, как и в случае с RS-триггером, можно составить логическое уравнение синхронного D-триггера, соответствующее приведенной таблице переходов:
.
Из уравнения видно, что при наличии тактирующего сигнала (С=1), триггер переходит в состояние Qn+1=Dn ,а при отсутствии тактирующего сигнала (С=0), триггер сохраняет предыдущее состояние Qn+1=Qn . Иными словами, синхронный D-триггер осуществляет запись информационного разряда по активному уровню сигнала C с последующим его хранением. Отсюда синхронный D-триггер имеет другое название – триггер-защелка.
Рассмотрим вариант реализации синхронного D-триггера на элементах И-НЕ. Для этого выполним следующие преобразования над задающей его работу ФАЛ
.
Полученное уравнение совпадает по своей структуре с уравнением для асинхронного RS-триггера, при условии, что , . Тогда очевидно, что D-триггер представляет собой RS-триггер, на информационные входы которого поданы сигналы в соответствии с полученными выражениями. Поскольку сигналы R и S на вход RS-триггера на базе элементов И-НЕ должны подаваться в инверсном виде, то для получения D-триггера, на входы RS-триггера необходимо подавать . Преобразуем выражение для к виду:
.
С учетом полученных выражений, структурная схема синхронного D-триггера на базе элементов И-НЕ может быть представлена совокупностью двух каскадов. Первый выполняет функцию формирования сигналов и , а второй – асинхронного RS-триггера (рис. 5.7,а). На рис. 5.7,б показано условное графическое обозначение D-триггера.
а) б)
Рис. 5.7. Структурная схема синхронного D-триггера на элементах И-НЕ и его УГО.
Т-триггер. Триггер T-типа является одновходовым устройством с двумя устойчивыми состояниями, изменяющимися каждый раз на противоположные при подаче на вход Т управляющего сигнала. Работа Т-триггера задается таблицей переходов:
tn |
tn+1 |
Tn |
Qn+1 |
0 |
Qn |
1 |
Составленное по таблице переходов СДНФ для Qn+1 уже имеет минимальный вид
.
Характерной его особенностью является то, что частота изменения потенциала на его выходах в два раза меньше частоты сигналов на входе T (рис. 5.8). Это свойство используется при построении двоичных счетчиков. Отсюда второе название T-триггера – счетный триггер.
Рис. 5.8. Диаграммы входного и выходного потенциалов T-триггера.
Структуру T-триггера можно определить путем преобразования его логической функции к удобному для синтеза в заданном базисе виду. Однако, из анализа работы RS-триггера очевидно, что в том случае, если он находился в единичном состоянии Q=1, то для сброса его в нулевое состояние необходимо сигнал с прямого выхода Q подать на вход R сброса в нуль. Если же RS-триггер изначально находился в нулевом состоянии, т.е. и , то для приведения его в единичное состояние необходимо сигнал с выхода подать на вход S установки в единицу. Достигается это путем введения обратных связей (рис. 5.9,а). При этом, роль входа Т будет выполнять вход разрешения C синхронного RS-триггера.
Т-триггер можно построить и на базе D-триггера. Если в логическом уравнении синхронного D-триггера принять , тогда уравнение запишется в виде
.
Полученное выражение является ни чем иным, как логическим уравнением T-триггера при условии, что функцию входа T выполняет вход разрешения C D-триггера. При этом на вход D необходимо подавать сигнал с инверсного выхода (рис. 5.9,б).
а) б)
Рис. 5.9. Синтез Т-триггера на базе синхронного RS-триггера и D-триггера.
Рассмотренные структуры Т-триггера являются практически нецелесообразными, поскольку характеризуются нестабильностью работы. Действительно, в течение всего времени, пока на входе T присутствует активный уровень сигнала, будет происходить непрерывная смена его состояний на противоположные с частотой, равной обратной величине времени задержки триггера. В результате возникает колебательный процесс. Причиной этого явления служит то, что Т-триггер, обладая обратными связями, принимает информацию как из внешней среды, так и со своих собственных выходов. Поэтому для устойчивой работы Т-триггера необходимо разделить во времени функции приема тактирующего сигнала Т и фиксации на входах R, S или D сигналов с соответствующих выходов Q и . Для этого в структуру Т-триггера вводится дополнительный второй запоминающий элемент на базе RS- или D-триггера. На синхронизирующий вход этого элемента тактовый сигнал подается в инверсном виде по отношению к тактовому сигналу первого запоминающего элемента. Подобная организация структур триггерных устройств называется двухступенчатой.
Пример двухступенчатого Т-триггера на базе двух синхронных RS-триггеров приведен на рис. 5.10,а, а на основе двух D-триггеров – на рис. 5.10,б. Из рисунка видно, что когда на синхронизирующем входе первого триггера в двухступенчатой структуре действует нулевой уровень тактирующего сигнала Т, он хранит свое состояние Q1 и . В это время на синхронизирующий вход второго триггера поступает инвертированный сигнал Т, т.е. имеющий уровень логической единицы. В результате второй триггер принимает состояние первого, т.е. Q1=Q2 и =. Запись в первый триггер при этом запрещена. Как только тактирующий сигнал Т примет уровень логической единицы, произойдет запись информации из второго триггера в первый. В результате состояние первого триггера изменится на противоположное. При этом запись во второй триггер производиться не будет, поскольку на его входе будет действовать нулевой уровень сигнала разрешения записи. Процесс будет повторяться с приходом каждого тактирующего импульса, что обеспечит устойчивую работу устройства. В условных графических обозначениях всех двухступенчатых триггеров принято в обозначении функции элемента указывать два символа «ТТ», как это показано на примере двухступенчатого Т-триггера (рис. 5.10,в). Вход Т Т-триггера принято называть счетным.
а) б)
Рис. 5.10. Двухступенчатый T-триггер на базе синхронных RS-триггеров и D-триггеров и его условное графическое обозначение.
JK-триггер. JK-триггер относится к двухвходовым устройствам и функционирует по правилам, похожим на правила функционирования RS-триггера. Отличие состоит в том, что в JK-триггере все состояния являются определенными. Можно провести аналогию входов JK- и RS-триггеров: вход K JK-триггера выполняет функцию входа R RS-триггера, а вход J JK-триггера – функцию входа S RS-триггера. При этом, если в RS-триггере комбинация единичных значений входов R и S является запрещенной, то в случае аналогичной комбинации J— и K-входов, JK-триггер меняет свое состояние на противоположное. Правило работы асинхронного JK-триггера можно сформулировать следующей таблицей переходов:
tn |
tn+1 |
|
Kn |
Jn |
Qn+1 |
0 |
0 |
Qn |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
Выполнив действия, аналогичные действиям по нахождению логической функции RS-триггера, можно определить выражение для Qn+1 асинхронного JK-триггера
.
Наибольшее распространение получили тактируемые или синхронные JK-триггеры, работа которых задается таблицей переходов:
tn |
tn+1 |
||
Cn |
Kn |
Jn |
Qn+1 |
0 |
0 |
0 |
Qn |
0 |
0 |
1 |
Qn |
0 |
1 |
0 |
Qn |
0 |
1 |
1 |
Qn |
1 |
0 |
0 |
Qn |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
Соответствующее таблице логическое выражение имеет вид
Поскольку при подаче на J— и K-входы триггер инвертирует свое состояние, т.е. выполняет функцию Т-триггера, то логично предположить, что структура синхронного JK-триггера должна повторять структуру T-триггера. В качестве базовых следует выбрать RS-триггеры. Причем, первый RS-триггер должен быть асинхронным и иметь внешнюю в структурном плане схему стробирования выходных сигналов с сигналом синхронизации C и соответствующими сигналами J и K (рис. 5.11,а). С выходов элементов И-НЕ сигналы имеют инвертированные значения, поэтому в качестве асинхронного RS-триггера следует выбирать триггер, реализованный на базе элементов И-НЕ и имеющий инверсные входы и . Условное графическое изображение синхронного двухступенчатого JK-триггера приведено на рис. 5.11,б.
а) б)
Рис. 5.11. Структура синхронного JK-триггера и его условное графическое обозначение.
Триггер JK-типа относится к разряду универсальных, поскольку на его основе можно получить схемы, выполняющие функции RS-, D- и T-триггеров. Для выполнения функции RS-триггера, JK-триггер можно использовать, не вводя никаких дополнительных связей и узлов. Достаточно сигнал S подать на вход J, а сигнал R – на вход K (рис. 5.12,а). При этом одновременная подача на эти входы логических единиц не нарушит правило работы RS-триггера, поскольку у RS- триггера такая комбинация входных сигналов является вовсе неопределенной.
Если в логическом уравнении для синхронного JK-триггера принять и , тогда
,
что совпадает с логическим уравнением D-триггера. Таким образом, для получения D-триггера из JK-триггера необходимо сигнал подавать на вход J, который будет выполнять функцию D-входа, а на вход K сигнал D подавать через инвертор (рис. 5.12,б).
Для получения T-триггера достаточно объединить входы J и K. Тогда справедливы следующие преобразования
.
Это уравнение приобретает вид логического уравнения T-триггера, причем объединенные входы J и K играют роль T-входа (рис. 5.12,в). В качестве входа Т можно использовать и вход разрешения записи С тактируемого JK-триггера. В этом случае на объединенные входы J и K необходимо постоянно подавать логическую единицу, что задает режим инвертирования состояния JK-триггера. При этом само инвертирование будет происходить лишь при поступлении на вход C разрешающего сигнала (рис. 5.12,г).
а) б)
в) г)
Рис. 5.12. Реализация триггеров различных типов на базе JK-триггера.
Рассмотренные ранее способы подачи входных сигналов характеризуются тем, что их активными уровнями являются статические состояния, т.е. сами уровни напряжения логического нуля или логической единицы. Такая форма управления цифровым устройством называется статической. Для тактируемых устройств эта форма управления в большинстве случаев является неудобной, поскольку в течение всего времени действия импульса сигнала синхронизации, устройство будет реагировать на любые изменения входных информационных сигналов. Таким образом, необходимо, чтобы информационные сигналы оставались неизменными на протяжении действия импульса синхронизации. Это значительно усложняет схему устройства, а в некоторых случаях и вовсе является не решаемой задачей, поскольку информационные сигналы могут носить характер случайной последовательности импульсов. Для устранения указанного недостатка используется принцип динамического управления. Согласно этому принципу, активным считается не статический уровень напряжения логической единицы или логического нуля, а процесс перехода из одного уровня в другой. Этот процесс представляет собой передний или задний фронт тактирующего импульса и, следовательно, характеризуется малым временным промежутком. Поэтому задача синхронизации значительно упрощается и представляет собой фиксацию входных информационных сигналов в строго определенный момент подачи или снятия импульса синхронизации. На рис. 5.13 показаны условные обозначения входов микросхем с динамическим управлением. В качестве сигнала выбран управляющий сигнал синхронизации С.
Рис. 5.13. Обозначение входов динамического управления.