Дешифратор – это устройство, предназначенное для преобразования двоичного кода в напряжение логической единицы (логического нуля) на том выходе, номер которого совпадает со значением двоичного кода на входе. При n входах в полном дешифраторе имеется 2n выходов, т.е. для каждой комбинации входных сигналов имеется соответствующий выход. Дешифратор, у которого при n входах число выходов меньше 2n, называется неполным. Другое название дешифратора — декодер. Принцип работы полного трехразрядного дешифратора рассмотрим на примере его таблицы истинности.
Входы |
Выходы |
|||||||||
X3 |
X2 |
X1 |
Y7 |
Y6 |
Y5 |
Y4 |
Y3 |
Y2 |
Y1 |
Y0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Соответствующие таблице истинности ФАЛ имеют вид
.
Структурная схема трехразрядного дешифратора, синтезированная на основании полученных ФАЛ приведена на рис. 4.10,а, а его УГО — на рис. 4.10,б.
б)
Рис. 4.10.Структурная схема и УГО трехразрядного дешифратора.
В общем случае логические уравнения для выходных переменных дешифратора n-разрядного числа имеют вид
………
.
Построенные по полученным формулам дешифраторы называются линейными. К преимуществу линейных дешифраторов можно отнести высокое быстродействие, поскольку входные переменные одновременно поступают на все элементы И. Одновременно, без дополнительных задержек, формируется и результат на выходах этих элементов. Очевидно, что для реализации линейного дешифратора n-разрядного числа необходимо иметь 2n логических элементов И с n-входами. В существующих микросхемах логических элементов количество входов ограничено. Следовательно, ограничена и разрядность реализуемых на их основе линейных дешифраторов, что является недостатком. Кроме того, недостатком является и то, что предыдущие элементы, работающие на входы дешифратора, должны иметь высокую нагрузочную способность, т.е. должны быть рассчитаны на подключение большого числа логических элементов И. Каждый из входов дешифратора подключен к 0,5·2n логическим элементам И. Поскольку нагрузочная способность базовых логических элементов ИС не превышает величины N=10?20, то максимальная разрядность дешифрируемых чисел для линейных дешифраторов n=4?5.
Указанного недостатка лишены пирамидальные дешифраторы. Принцип построения этих дешифраторов состоит в том, что сначала строят линейный дешифратор для двухразрядного числа X1, X2, для чего необходимы 22=4 двухвходовые схемы И. Далее, каждая полученная конъюнкция логически умножается на входную переменную X3 в прямой и инверсной форме. Полученная конъюнкция снова умножается на входную переменную X4 в прямой и инверсной форме и т.д. Наращивая таким образом структуру, можно построить пирамидальный дешифратор на произвольное число входов. На рис. 4.11 приведена структура пирамидального дешифратора для трех разрядов.
>Рис. 4.11. Пирамидальный дешифратор для трехразрядного числа.
Характерным отличием пирамидальных дешифраторов от линейных является использование только двухвходовых логических элементов вне зависимости от разрядности дешифрируемого числа. В то же время количество логических элементов в пирамидальном дешифраторе больше. Однако следует иметь ввиду, что количество логических элементов, располагаемых в одном корпусе ИС, определяется главным образом требуемым количеством выводов. Следовательно, в одном корпусе ИС можно расположить большее число двухвходовых элементов, чем трехвходовых, четырехвходовых и т.д. И значит, пирамидальная структура дешифратора по числу корпусов ИС может оказаться более предпочтительной, чем линейная.
Шифраторы выполняют задачу обратную той, которую выполняют дешифраторы: появление логической единицы (логического нуля) на определенном входе приводит к появлению соответствующей кодовой комбинации на выходе. Также как и дешифраторы, шифраторы бывают полными и неполными. Работа восьмивходового полного шифратора задается следующей таблицей истинности:
Входы |
Выходы |
|||||||||
X7 |
X6 |
X5 |
X4 |
X3 |
X2 |
X1 |
X0 |
Y3 |
Y2 |
Y1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
На основании таблицы истинности можно записать ФАЛ, задающие работу восьмивходового шифратора:
.
Синтезированная на основании приведенных логических уравнений структурная схема шифратора представлена на рис. 4.12,а, а его условное графическое обозначение – на рис. 4.12,б.
а) б)
Рис. 4.12.Структура и УГО восьмивходового шифратора.
Получить бесплатную консультацию
|