Электроника и микропроцессорная техника | Страница 9 из 12

Электроника и микропроцессорная техника

Электроника и микропроцессорная техника

Операционные усилители и преобразователи на их базе

Операционные усилители (ОУ) – исторически сложившееся название, связанное с использованием этих усилителей для моделирования операций. Они относятся к классу усилителей постоянного тока (УПТ) прямого усиления. Характерными особенностями ОУ являются: большой коэффициент усиления, большое входное и малое выходное сопротивления, широкая полоса пропускания, дифференциальный вход. Перечисленные свойства, а также интегральная технология изготовления сделали ОУ одним из основных компонентов современных аналоговых электронных схем. ОУ также нашли широкое применение и в импульсной технике в качестве компараторов, релаксационных генераторов. Основой ОУ является дифференциальный каскад типа балансного УПТ, рассмотренный выше.

Условное графическое обозначение ОУ и его основные выводы показаны на рис. 63, ОУ по отношению к нулевому уровню имеет два входа и один выход.

Вход I, обозначенный знаком «+», называют неинвертиртирующим. Выходное напряжение ОУ совпадает по знаку со входным напряжением на этом входе.

Электроника и микропроцессорная техникаВход 2, обозначенный знаком «-«, называют инвертирующим — выходное напряжение и входное напряжение на этом входе противоположны по знаку. Между входами 1 и 2 образуется дифференциальный вход усилителя.

Входы и выход ОУ обычно выполняют на нулевом уровне, т.е. в исходном состоянии, при отсутствии входного сигнала напряжения на входах и на выходе равны нулю. При подаче входного сигнала напряжение на выходе может как увеличиваться, так и уменьшаться. Для этого для питания ОУ используют, как правило, два разнополярных источника питания +UПи —UПпричём  |+UП|=|-UП|. Входное напряжение подают на один из входов, а на второй вход подают постоянный, например, нулевой потенциал или на оба входа подают два разных напряжения от двух раздельных источников (рис.64 а,б) . В обоих случаях на дифференциальном входе ОУ действует дифференциальный входной сигнал UВХ=UВХ2 — UВХ1. Этот сигнал может быть получен и от одного источника с незаземлённым выходом (рис. 64в).

Схемы подачи входного сигнала

Рис. 64. Схемы подачи входного сигнала на входы ОУ

Если входные напряжения UВХ1 и UВХ2 одинаковы и у них совпа­дают амплитуды и фазы, то их называют синфазными входными напря­жениями или синфазным сигналом UВХ.СХ.. При подаче синфазного сиг­нала входы I и 2 фактически являются объединёнными, и на них подаётся напряжение UВХ.СФ от общего источника (рис.65). Синфазные сигналы являются вредными и возникают в результате внеш­них наводок на цепи ОУ, при колебаниях напря­жений питания, окружающей температуры и т.д., поэтому синфазные сигналы иногда называют син­фазными помехами.

Схема подачи синфазного сигнала

Рис. 65. Схема подачи синфазного сигнала

Общая структурная схема ОУ показана на рис.66. Для ОУ являются обязательными два, а иногда три, каскада усиления,  которые  обеспечивают большой  коэффициент усиления, каскад сме­щения или сдвига уровня, который обеспечивает на выходе нулевой потенциал при отсутствии входного сигнала, и выходной каскад, обеспечивающий малое выходное соп­ротивление ОУ. Кроме этих, общих для всех ОУ, функциональных узлов в конкретных типах ОУ дополнительно применяют входные и междука­скадные эмиттерные повторители, цепи защиты входа ОУ от перенапряжений и выхода ОУ от короткого замыкания, а также цепи внутренней кор­рекции частотной характеристики ОУ.

Структурная схема операционного усилителя

Рис. 66. Структурная схема операционного усилителя

В первом каскаде усиления применяют балансный УПТ с симметричным дифференциальным входом. Для увеличения входного сопротивления ОУ в первом каскаде используются составные транзисторы и режимы малых коллекторных и базовых токов. В некоторых ОУ для увеличения входного сопротивления применяют дополнительные входные каскады — эмиттерные повторители на биполярных транзисторах и истоковые повторители на полевых униполярных транзисторах. В качестве второго каскада усиления используют или балансный УПТ с несимметричным выходом или реостатный усилитель. Простейшим выходным каскадом ОУ является эмиттерный повторитель, работающий в линейном режиме.

При использовании в электронных устройствах ОУ почти всегда охвачен обратной связью. Именно в совокупности с цепями обратных связей ОУ образует определённый функциональный узел и выполняет заданные операции, поэтому необходимо различать параметры собственно ОУ, как отдельного элемента, и параметры узлов, выполненных на базе ОУ. На высоких частотах образуется фазовый сдвиг между выходным и входным напряжениями, дополнительный к заданному изменению фазы на 180°. Суммарный сдвиг фаз может достигнуть в усилителе с обрат­ной связью 360°, обратная связь станет положительной, и при достаточно большом коэффициенте усиления ОУ может самовозбудиться. В связи с этим в ОУ предусматривают цепи коррекции частотной характеристи­ки. Эти цепи создают ООС, которая уменьшает коэффициент усиления на высоких частотах. В большинстве ОУ предусмотрена внешняя коррекция при помощи внешних навесных элементов — резисторов и конденса­торов.  В некоторых ОУ коррекция выполнена внутри интегральной микросхемы. Во всех случаях при расширении полосы пропускания ОУ уменьшают его коэффициент усиления и, наоборот, при необходимости увеличить усиление сужают полосу.

Система параметров, характеризующих операционный усилитель, помимо приведенных выше общих для усилителей любого типа включает в себя ряд специфических
показателей, к ним относятся:

  • Uсм-напряжение смещения (1-10мВ) – приведенное ко входу напряжение, необходимое для смещения амплитудной характеристики в начало координат, т.е.приведения к нулю выходного напряжения ОУ при отсутствии входных сигналов в нормальных климатических условиях, напряжение смещения подаётся на один из входов ОУ или на специальный вход при настройке схемы ,
  • m= ? Uсм/0С – температурный коэффициент напряжения смещения (10-50 мкВ/0С),
  • Iвх = (Iвх1+Iвх2)/2 – входной ток ОУ, определяемый как полусумма входных токов каждого входа (10-200 нА),
  • ? Iвх= (Iвх1-Iвх2) –ток сдвига (1-100нА),
  • n= ? ? Iвх/0С – температурный коэффициент тока сдвига (0,1-10 нА/0С),
  • Ксф =Uвых.сф./Uвх.сф. –коэффициент передачи синфазного сигнала (1-10),
  • Ксф.ос.=20lgК/Ксф (50-80 дб) –коэффициент ослабления синфазного сигнала, здесь К – собственный коэффициент усиления ОУ,
  • V(10-50 В/мкс) – скорость нарастания напряжения на выходе ОУ при подаче на его вход прямоугольного импульса напряжения,
  • ?гр.-граничная частота полосы пропускания при которой Коу падает до 0,7 своего значения при нулевой частоте входного сигнала (10 –50 КГц)
  • F1 – частота единичного усиления (1-10 МГц) при которой Коу уменьшается до1.

Параметры ?гр., F1 позволяют определить реальную величину Коу на заданной частоте входного сигнала.

Примечание: в скобках указан примерный диапазон параметров, характерный для современных  ОУ различных типов. Кроме того. нормируются также предельно допустимые величины напряжений питания ОУ, входных дифференциального и синфазного напряжений.

В настоящее время используют несколько десятков различных функциональных узлов, выполненных на базе ОУ.

На рис. 67 показан инвертирующий усилитель. В исходном состоянии напряжение на входе и выходе усилителя равны нулю. Внешние резисторы R1, R2 образуют цепь ООС, резистор R3 используют для компенса­ции влияния входных токов ОУ, являющихся одной из причин дрейфа выходного напряжения (механизм этого влияния будет рассмотрен ниже).

Инвертирующий усилитель

Рис. 67. Инвертирующий усилитель.

анализе схем с ОУ  используется понятие «идеальный ОУ», у которого К=? , RВХ=?, RВЫХ=0. Эти приближения позволяют сформулировать два правила для идеального ОУ: Uвх.дф.= Uвых/=0 (т.наз. эквипотенциальный нуль,  когда потенциалы инвертирующего и неинвертирующего входов  одинаковы, но сопротивление между ними очень велико) и Iвх = Uвх.дф/RВХ = Uвх.дф/? =0 ( ОУ по входам тока не потребляет).Эти правила существенно облегчают расчеты при приемлемом уровне погрешности, которая тем меньше, чем ближе параметры реального ОУ к идеальным, что имеет место у современных интегральных ОУ. Пользуясь указанными приближениями и основными выводами теории обратной связи , можно записать вместо очевидного соотношения  i1 = iос + iвх  уравнение i1? iос  , т.к. RВХ=? и iвх = 0, тогда получим напряжение обратной связи  и коэффициент обратной связи в виде:

Электроника и микропроцессорная техникаЭлектроника и микропроцессорная техника

Далее можно условно считать, что  Rвх.ос. = Uвх/ i1 = R1, (т.к. Uвх.дф.=0), т.е. входное сопротивление схемы относительно невелико, что является особенностью инвертирующего ОУ. Внешний коэффициент усиления  Квнеш. (применяется также обозначение Кос) найдем из следующих очевидных для идеального ОУ соотношений:

i1 = Uвх/R1 ; iос= Uвых./R2; i1 = iос= Uвх/R1= Uвых./R2 и Квнеш.=  Uвых./ Uвх = —  R2/ R1

(знак «-»  отражает инвертирующие свойства данной схемы, в расчётах обычно не используется ). Выходное сопротивление схемы приблизительно равно Rвых.ос.=Rвых.ОУ/2. Указанным способом можно получить вполне приемлемые для инженерных расчётов основные параметры схемы усилителя, имея ввиду, что допущенные погрешности будут скомпенсированы на этапе наладки при практической реализации  схемы.

Если R1=R2, то Kос=-1 , т.е. этот усилитель будет выполнять роль инвертора — устройства, изменяющего только знак вxoдного сигнала без изменения его величины.

На рис.68  показан неинвертирующий  усилитель. Здесь входной сигнал подают на неинвертирующий вход ОУ, сигнал на выхо­де имеет тот же знак. Так как в ОУ с ООС потенциалы входов VА=VБ , то на входе «б» при действии входного сигнала: UБ=UВХ.. Следовательно можно считать, что

Электроника и микропроцессорная техника,

откуда

Электроника и микропроцессорная техника.

Входное сопротивление :

RВХ.ос » RВХ.ОУ т.е. оно гораздо больше, чем у инвертирующего усилителя. Выходное сопротивление R ВЫХ.ос»R ВЫХ./2.

Неинвертирующий усилитель

Рис.68 Неинвертирующий  усилитель.

На рис.69  показан повторитель сигнала — функциональный узел, в котором входной и выходной сигналы одинаковы по знаку и по величине. Коэффициент усиления повторителя Кос=1. 0н получается из формулы для предыду­щей схемы, если учесть, что R2=0, R1=?. Входное сопротивление RВХ.ПОВТ. »RВХ.ОУ, т.е. очень большое. Выходное сопротивление RВЫХ.ПОВТ » RВЫХ.ОУ/К »0. Такие параметры делают повторитель удобным каскадом согласования высокоомного источника сигнала и низкоомной нагрузки.

Повторитель на базе ОУ

Рис.69. Повторитель на базе ОУ

На рис.70  показан двухвходовой инвертирующий сумматор. Здесь резисторы R1.1, R1.2 служат совместно с R2 для об­разования ООС. Кроме того, резисторы R1  служат для взаимной развязки друг от друга источников сигналов. При R1=R2, КОС=-1 и UВЫХ=-(UВХ1+UВХ2). Для каждого источника входное сопротивление сумматора RВХ.СУМ » R1;  выходное сопротивление RВЫХ.СУМ ?RВЫХ /2.

Инвертирующий сумматор

Рис.70. Инвертирующий сумматор

На рис.71 показан интегратор. В цепъ ООС вместо R2 включён конденсатор С. Так как для «идеального ОУ» i1= 2,i1= -UВХ /R1,Электроника и микропроцессорная техника, то Электроника и микропроцессорная техника. Входное сопротивление при этом RВХ = R1,  а выходное сопротивление RВЫХ.ИНТ. »RВЫХ.ОУ.

Интегратор

Рис.71. Интегратор

В частном случае, когда на вход интегратора подается импульс постоянного напряжения Uвх = Uм длительностью tи, на выходе образуется линейно изменяющееся напряжение:
Uвых = Uм*tи/t, где t = RC – постоянная времени цепи обратной связи.
Интегратор, работающий в указанном режиме часто используется в генераторах линейно изменяющегося напряжения (ГЛИН), а также в  схемах формирования пилообразного напряжения развертки.

На рис.72  показан компаратор, который служит для определения момента ра­венства двух напряжений. Здесь входное синусоидальное напряжение сравнивается с нулевым потенциалом. ОУ использован без обратной связи, что является особенностью данной схемы. Напряжение на выходе при­нимает два крайних значения ±UНАС, где UНАС — напряжение насыщения ОУ (максимально возможное напряжение на выходе, обычно ниже напряжения питания на 1-2В). При положитель­ном входном сигнале напряжение на выходе отрицательное. При переходе входного нап­ряжения через нуль выходное напряжение меняет знак.

Компаратор

Рис. 72. Компаратор

Широкое применение в измерительной технике находят так называемые активные фильтры на базе ОУ. Термин «активный» объясняется включением в схему RC-фильтра активного элемента – в данном случае ОУ. Смысл такого включения заключается в компенсации потерь на пассивных элементах фильтра с целью получения высокой равномерности коэффициента передачи в полосе пропускания и большой крутизны спада передаточной характеристики. Теория активных фильтров в настоящее время хорошо разработана, методика их расчетов доведена до таблиц и номограмм. Основная задача при этом сводится к аппроксимации передаточной характеристики полиномами Чебышева, Бесселя и др. Выбор коэффициентов этих полиномов, а, следовательно, и параметров элементов схемы фильтра, обеспечивает наилучшее в том или ином смысле приближение к желаемым амплитудно-частотным характеристикам.

В качестве примера на рисунке 73 приведен двухполюсный (по числу конденсаторов) фильтр нижних частот (пропускает на выход сигнал  в диапазоне частот от нуля до частоты среза).

Активный НЧ фильтр

Рис. 73  Активный НЧ фильтр

Здесь KОС — коэффициент усиления ОУ, охваченного отрицательной обратной связью (элементы R и (KОС-1)?R). ОУ в неинвертирующем включении обеспечивает относительно плоскую передаточную характеристику в полосе пропускания и крутой спад на частоте среза при соответствующем выборе R, R1, R2, C1, C2. Последовательное соединение подобных схем (многополюсные фильтры) позволяет добиться необходимой формы передаточной характеристики.

Измерительный усилитель тока используется для измерения малых токов без внесения искажений в цепь за счет внутреннего сопротивления обычного микроамперметра. Схема такого усилителя показана на рис.74

Схема измерения малых токов

Рис. 74 Схема измерения малых токов на базе ОУ

Источник измеряемого тока показан в виде эквивалентной схемы, содержащей источник ЭДС  еВХ с внутренним сопротивлением RU,  которая выполняет роль резистора R1 в обычной схеме инвертирующего усилителя (рис.67). Нетрудно показать, что в этом случае UВЫХ = —R2IВХ, что легко выполнимо для ОУ, имеющего большой собственный (внутренний) коэффициент усиления. По этой же причине входное сопротивление схемы весьма мало и не оказывает влияния на величину измеряемого тока. Заменив в схеме (рис.74) резистор R2 на конденсатор, получим интегратор входного тока (усилитель электрического заряда), удобный, например, для усиления сигналов пьезоэлектрических датчиков. В этом случае существенно снижается погрешность измерения по сравнению с обычной схемой усиления напряжения пьезоэлектрического датчика.

Свойство усилителя на базе ОУ поддерживать ток в цепи обратной связи равным току во входной цепи используется для прецизионных преобразователей сопротивления в напряжение (ПСН), особенно если резистивный датчик (обычно тензодатчик) находится на значительном удалении от измерительной части схемы. Принцип работы простейшего  ПСН показан на рис.75.

Простейший ПСН

Рис.75. Простейший ПСН

Rх,Rо –измеряемое и образцовое  сопртивления,

r1,r2– сопротивления проводов длинной линии,
Uо – источник образцового напряжения.

Из вышеизложенного следует: Uвых.= -А*Rх при условии r1 = r2 =0, где А = Uо/Rо = =Const., реально Uвых.= Uо/Rо*( Rх + r1 + r2 ), т.е. вносится погрешность влияния сопротивления проводов соединительной линии. Существенно уменьшить эту погрешность можно используя трёхпроводную линию как показано на рис.76.

ПСН с трёхпроводной линией

Рис.76 ПСН с трёхпроводной линией.

r3 – сопротивление третьего провода

В этом случае третий провод передаёт лишь потенциал на инвертирующий вход ОУ, поскольку его сопротивление  исчезающе мало по сравнению с входным сопротивлением ОУ, сопротивление  rобычно много меньше образцового Rо и также перестаёт существенно влиять на погрешность, кроме того справедливо и соотношение r1«Rх. При этих практически реальных условиях можно показать, что:

Электроника и микропроцессорная техника

если  при этом  выполняется  соотношение

Электроника и микропроцессорная техника
,то результат измерения  сопротивления будет близок к идеальному.